
1

Checking your
cryptography
usage with eBPF

Simo Sorce
Sr. Princ. Sw. Engineer

RHEL Crypto Te am

2

Auditing cryptography usage

Cryptography is implemented in applications mostly through
libraries dynamically loaded from the system
– GOOD: we have a few, well managed and maintained cryptography

providers
– BAD: applications do not provide uniform access to information about

cryptography use, nor libraries can surreptitiously open files to log
data

3

Auditing cryptography usage

How do we learn what our system is actually using in daily
operations?
How do we make sure that the configurations we set are being
actually honored?
How do we gather statistics to inform our future decisions?

4

Tracing as a form of auditing

A similar problem has been solved previously: Performance
profiling
Tools:
– Tracing via debug statements

Generally not ok for production
– Tracing via user space tools ptrace, gdb

Also not ok for production
– Tracing via eBPF

Low impact, usable in production

5

What is eBPF?

Extended Berkeley Packet Filter
– BPF was initially used just for packet filtering, hence the name
– It is a limited Virtual Machine (with optional JIT) running “arbitrary

code” in kernel
– Can intercept other code running in the kernel and in user space and

perform additional computations defined by programs loaded
dynamically in the kernel

– Requires root privileges in most cases

6

Why eBPF ?

Allows to intercept any function in any library loaded in the
system
Allows to gather data in tables that can be later queried by a
user space program
Generally low performance impact
Does not* require changes to the code under inspection
– Although probes in the code makes it more usable

7

What to monitor?

One thing I wanted to monitor is what TLS ciphers are actually
negotiated by my machine.
Until TLS 1.2 there are a gazillion ciphers that can be used, do I
really need to enable them all?
Let’s try to find out.

8

Probing our system (uprobes)

#!/usr/bin/bpftrace

BEGIN
{
 printf("Tracing selected ciphers... Hit Ctrl-C to
end.\n");
 printf("%-6s %s\n", "PID", "CIPHER");
}

uretprobe:/lib64/libssl.so.1.1:ssl3_choose_cipher
{
 printf("%-6d %lx,%s\n", pid, *retval,
str(*(retval+8)));
}

uprobe:/usr/lib64/libssl3.so:ssl_ClientSetCipherSuite
{

@start[tid] = nsecs;
@suite_counter[arg2] = count();
printf("%-6d [%x]\n", pid, arg2);

}

9

Probing our system

Using uprobes
– Pros:

Easy to set up quickly
Can be done even with a one liner from your shell for simple things

– Cons:
Requires all debuginfo packages installed
Somewhat hard to pull data from complex data structures
Might need probe adjustment when library internals change

10

Instrumenting our system

Second try, USDT probes
diff -up nss/lib/ssl/ssl3con.c.usdt nss/lib/ssl/ssl3con.c
--- nss/lib/ssl/ssl3con.c.usdt 2020-01-03 15:27:43.000000000 -0500
+++ nss/lib/ssl/ssl3con.c 2020-01-15 14:37:49.607416077 -0500
@@ -35,3 +35,4 @@

 #include <stdio.h>
+#include <sys/sdt.h>

@@ -6644,3 +6645,7 @@

 ss->ssl3.hs.cipher_suite = (ssl3CipherSuite)suite;
+
+ /* Add USDT probe to report the selected cipher for the connection */
+ DTRACE_PROBE1(cryptoaudit, nss-tls-cipher, ss->ssl3.hs.cipher_suite);
+
 return ssl3_SetupCipherSuite(ss, initHashes);

11

Instrumenting our system

Using USDT (User Statically-Defined Tracing) probes
– Pros:

Easy to get just the data you want
No debug packages involved
No need to adjust probing code over time*

– Cons:
Requires new builds with source level changes

12

How to gather data

There a few ways to enable probes and source data from them
– Bpftrace tool
– BCC (BPF Compiler Collection)

Ready made BCC Tools
Custom C/C++ programs
Custom Python programs using BCC bindings

– I chose this!

13

Example: add a probe with python

BPF can be easily accessed by python programs, this makes
iterating and experimenting very easy
– Just do:

$ python3
>>> from bcc import BPF
>>> help(BPF)

14

The actual BPF code

We need to create a probe first:
openssl_tls_cipher_probe_text = """
 #include <uapi/linux/ptrace.h>

 struct cipher_key_t {
 u32 cipher;
 };
 BPF_HASH(ciphers, struct cipher_key_t);

 int count_cipher_use(struct pt_regs *ctx)
 {
 struct cipher_key_t key = {};

 bpf_usdt_readarg(1, ctx, &key.cipher);
 ciphers.increment(key);

 return 0;
 }
"""

Structure used to pass data to user space

Hashmap, counts each
cipher’s invocations

Code that will be executed
in kernel each time the
probe is triggered

15

Installing the probe

Next we need to install it in the kernel:
load BPF program

u = USDT(path='/lib64/libssl.so.1.1')

u.enable_probe(probe="openssl-tls-cipher", fn_name="count_cipher_use")

B = BPF(text=openssl_tls_cipher_probe_text, usdt_contexts=[u])

Dynamic Library to intercept

BPF program previously defined

Name of the USDT probe

Name of the function to attach to the probe

16

Collect data

Finally:
while True:
 try:
 #print data every 5 seconds
 time.sleep(5)
 c = b["ciphers"]
 for k, v in sorted(c.items(), key=lambda c: c[1].value):
 print("{}: {}".format(k.cipher, v.value))
 except KeyboardInterrupt:
 exit()

Hashmap used to pass data to user space

Prints cipher number and count

17

Output example

OpenSSL TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: 1
OpenSSL TLS_AES_128_GCM_SHA256: 2
OpenSSL TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: 32
OpenSSL TLS_AES_256_GCM_SHA384: 79
NSS TLS_AES_256_GCM_SHA384: 171
NSS TLS_AES_128_GCM_SHA256: 207
NSS TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: 525

TLS 1.3

Data:
457 connections used TLS 1.3 251 connections used 256bit security
556 connections used TLS 1.2 766 connections used 128bit security
Findings: Firefox reconnects a lot and the Web I use is mostly TLSv1.2 - 128bit

Firefox

linkedin.com/company/
red-hat
youtube.com/user/
RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

18

Questions?

RHEL Crypto Te am Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

