
Dealing with cache based attacks in
cryptography

Speculating on cache attacks

Simo Sorce
Sr. Principal Software Engineer
2019/02/19

INSERT DESIGNATOR, IF NEEDED2

What are cache based attacks ?
In cryptography

In cryptographic operations, leaking the internal state of a computation can
lead directly to key compromises or, less dramatically, to the ability to
create forgeries. Cache based attacks can be used to:

● Detect input dependent branch points
● Detect table lookups
● Detect error conditions

All of these events can lead to knowledge about the outcome or path taken
by an internal operation, in a ways similar to timing based attacks.

INSERT DESIGNATOR, IF NEEDED3

ATTACKER VICTIM

Classic Example
Can be executed against data or instruction caches depending on what is
more convenient

Use timing on reload to fgure out what has been cached by the CPU while
executing the victim’s code, infer internal status.

This simple attack may be too coarse in some cases.

FLUSH or PRIME

RELOAD or PROBE

Execute conditional

INSERT DESIGNATOR, IF NEEDED4

ATTACKER VICTIM

Speculation aided cache attack
Using Branch Predictor (should be mitigated by IBPB/STIBP)

Train the branch predictor then fush your own caches for the “spy” branch.
Let the victim code run, then run your own “spy” branch. See if the “trainer
offset” fushed line was loaded by the “spy” (measure time to access).
If not, the victim branch fred and retrained the BP.

FLUSH

Conditional op.

Trainer

Shadow branches

Spy

INSERT DESIGNATOR, IF NEEDED5

How do we handle these attacks ?
In cryptographic libraries

● All computations must be time and
memory access constant

● Remove table lookups
● Compute even after errors, and report

errors in silent ways

All of these tend to make code slower.

Historically only timing attacks were considered likely, however since then
running “untrusted” code on shared hosts has become a lot more common
(VPSs, PaaSs, containers). Not all cryptographic libraries developers feel
ready to fght local attacks, considered way too hard to defeat.

The only way is to avoid conditionals like the plague, even where previously
they would have been undetectable via classic timing attacks.

6

Example

/* fill destination buffer fully regardless of outcome. Copies the message
 * in a memory access independent way. The destination message buffer will
 * be clobbered past the message length. */
shift = padded_message_length - buflen;
cnd_memcpy(ok, message, padded_message + shift, buflen);
offset -= shift;
/* In this loop, the bits of the 'offset' variable are used as shifting
 * conditions, starting from the least significant bit. The end result is
 * that the buffer is shifted left exactly 'offset' bytes. */
for (shift = 1; shift < buflen; shift <<= 1, offset >>= 1)
 {
 /* 'ok' is both a least significant bit mask and a condition */
 cnd_memcpy(offset & ok, message, message + shift, buflen - shift);
 }

/* update length only if we succeeded, otherwise leave unchanged */
*length = (msglen & (-(size_t) ok)) + (*length & ((size_t) ok - 1));

/* fill destination buffer fully regardless of outcome. Copies the message
 * in a memory access independent way. The destination message buffer will
 * be clobbered past the message length. */
shift = padded_message_length - buflen;
cnd_memcpy(ok, message, padded_message + shift, buflen);
offset -= shift;
/* In this loop, the bits of the 'offset' variable are used as shifting
 * conditions, starting from the least significant bit. The end result is
 * that the buffer is shifted left exactly 'offset' bytes. */
for (shift = 1; shift < buflen; shift <<= 1, offset >>= 1)
 {
 /* 'ok' is both a least significant bit mask and a condition */
 cnd_memcpy(offset & ok, message, message + shift, buflen - shift);
 }

/* update length only if we succeeded, otherwise leave unchanged */
*length = (msglen & (-(size_t) ok)) + (*length & ((size_t) ok - 1));

memcpy(message, terminator + 1, message_length);
*length = message_length;
memcpy(message, terminator + 1, message_length);
*length = message_length;

x3 - x5

H Padding Message

INSERT DESIGNATOR, IF NEEDED7

Do we continue like this ?

Considering that:
● It is very hard to reason in this way
● Compilers tend to optimize away safeguards
● Some “safer” higher level languages do not have a level of control that

allows to deal with these issues in this way

New instructions to protect critical
sections by messing with caches ?

facebook.com/redhatinc

twitter.com/RedHat

plus.google.com/+RedHat

youtube.com/user/RedHatVideos

linkedin.com/company/red-hat

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

