- redhat

GSS-Proxy:

Better privilege separation

Simo Sorce
Principal Software Engineer, Red Hat
February 2013

Outline

Introduction to GSS-API

Using GSS-API

Introduction to GSS-Proxy
GSS-Proxy components

Kernel upcalls and GSS-Proxy
Privilege separation and GSS-Proxy
Automatic credential handling

Introduction to GSS-API

GSS-API = Generic Security Service AP

Abstraction layer introduced to simplify use of Kerberos for
client-to-server interaction by hiding low level kerberos API
Into a 'mechanism'.

Not limited to Kerberos.

Enables applications to use a consistent AP| with multiple
authentication protocols, to set up communication channels

Also provides integrity (authentication/signing) and
confidentiality (encryption/sealing) services.

If the underlying protocol allows it, also provides delegation
capabilities

Analogous to Windows SSPI (and interoperable with it)

N

Applications using GSSAPI

Enterprise applications that want to offer Single Sign
On capabillities (generally through Kerberos)

Examples:

LDAP/IMAP/SMTP/... + SASL/GSSAPI/Krb5
SASL = Simple Authentication and Security Layer
SSH + GSSAPI
GSSAPI/Krb5 used for auth only (also avail. Keyex patches)
HTTPS + SPNEGO
GSSAPI/SPNEGO/Krb5 or NTLMSSP)
NFS + RPCGSS (Secure NFS)
GSSAPI/Krb5

Using GSS-API

Acquisition of credentials
Generally 'default' credentials are used

In the krb5 case obtained via kinit (password or keytab)
Establishment of security context

gss_Init_sec context() / gss_accept_sec_context()

Depending on the underlying protocol multiple round trips may
be used to complete context establishment.

Exchange of messages using security context

Messages can be signed and/or sealed using the
established security context. eg. gss_wrap/gss_unwrap

Disposal of security context

&

Connection using GSS-API

' Clent N s

1c. <acquire client credentials> 1s. gss_import_name [server]
2c. gss_import_name [server] 1t 2s. gss_acquire_cred [KRB5 KTNAME]
3c. [ctx] <- gss_init_sec_context . 3s. gss_accept_sec_context -> [ctX]

N. round trips

2t
Payload encrypted >

4c. gss_wrap [plain] -> [cipher] 4s. gss_unwrap [cipher] -> [plain]

. . 3t . .
5c. [plain] <- gss_unwrap [cipher] | <= payload encrypted 5s. [cipher] <- gss_wrap [plain]

N / . /

Why a GSS Proxy ?

Standard GSS-API assumes direct access to credentials
and long term keys by the application

A proxy allows to implement privilege separation

Application can use credentials w/o access to long term
secret

GSS-API is an extensive library and is not usable directly
by the kernel

Allows to use the full GSS-API from the kernel by turning a
local API into a local IPC

Potential for developing an ssh agent

avoid full delegation of credentials

keep SSO working when jumping through multiple hosts

N

Connection using GSS-API with GSS-Proxy

(o \ e S

GSS Proxy | = 1 » | GSS Proxy

N. round trips

™ -

1s. gss_import_name [server]
2c. gss_import_name [server] 2s. gss_acquire_cred [KRB5_KTNAME]
3c. [ctx] <- gss_init_sec_context 3s. gss_accept_sec_context -> [ctX]
(context exported to application) , (context exported to application)
4c. gss_wrap [plain] -> [cipher] 2t 4s. gss_unwrap [cipher] -> [plain]

Payload encrypteol$

. . 3t . .
Qc.\[plam] =" gss_Unwrap [mp@ - Payload encrypted \5&.[0lphﬂ] <- gss_wrap [plain] /

GSS-Proxy anatomy

GSS Proxy is actually 3 things in one.

A service daemon

the 'gssproxy' binary - listens on unix sockets
A stateless, event driven server

A GSSAPI mechanism plugin (shared object)

proxymech.so - a gssapi 'interposer' mechanism
Requires special interposer plugin support (only in MIT 1.11)

A communication protocol

An XDR based RPC protocol (see gss_proxy.x file)
RPCs ops are compounded to reduce latency

Privilege separation

10

For services that use keytabs to accept contexts

Keytab not available directly to the application

Proxymech.so intercepts KRB5 mechanism and proxies calls
to GSS-Proxy

GSS-Proxy establishes the context on behalf of the
application and then exports the context with only the session
keys to the application

If the application is compromised credentials can be used,
but not stolen.

Multiple applications can use the same keytab w/o
compromising each other

In future the GSS-Proxy can be augmented with policies that
limit what the credentials can be used for.

&

Privilege separation

1. client token from>
init sec context

5. Reply token

libgssapi +

-
proxymech
6. protected
communication
Proxymech.so uses a 4 N
Unix Socket to connect
to GSS-Proxy, then uses RPC GSS-Proxy < Use keytab to
Protocol to communicate accept context

< /

11

Kernel upcall

First prospect user of GSS Proxy: kernel NFSD

Current NFS server uses a bad hand crafted protocol for
upcalls that is limited to less than a memory page (~ 2KiB)

Prevents context establishment with large tickets
such as when a large MS-PAC is attached to a ticket

Kernel patches have been created to let the kernel speak
the GSS-Proxy protocol on a unix socket

Still not upstream due to minor integration issues caused by new
support for containers

The GSS Proxy establishes the security context

Exports a 'lucid’' context to the kernel
Also sends user creds (uid + list of secondary gids)

12

Kernel NFSD and GSS-Proxy

« N
Well defined GSS Proxy RPC ?Zi Use 'It(eyttf?
Protocol over a Unix Socket. ecrypt au
- -
Supports: e token and get
- large krb tickets user identit
- large user credentials \ / /

- potentially channel bindings

R
Sog
S T v
v X Qo
§ S8
Y
> .@(\”b}o"
VOYSES
Vg I

1. Client auth req,
(RPCGSS)

<2 Reply token

7. Use [uid+gidsL
For FS authz

6. Client sends
. >
FS operations

13

Automatic Credential handling

14

The Secure NFS client case

Secure NFS relies on RPCGSS and Kerberos
A user needs krb5 credentials to access the NFS share

Some applications run as users but have no reason to
use Kerberos outside of the need to access NFS

GSS-Proxy can use a keytab stored in a special area to
acquire credentials on behalf of the application user so
that Secure NFS access is allowed

Applications need no modification nor fragile cron jobs
need to be created, process Is transparent

N

NFS Client with GSS-Proxy provided autocred

i 4, 9. acquire Libgssapi +
5. acquire cred ,
i Wit?l keytab {GSS-Proxy}Cred / Init sec (;’[)(>

1. process walks into path
$ cd /nfs/share
$ cat file

7. Client auth re
(RPCGSS)

o
\/

11. Client sends
NFS operations

: D

>

Grab the PAC and run (more on priv. sep.)

MS Active Directory attaches user credentials to krb5 tickets

PAC (Privilege Access Certificate)
The PAC is signed with the KDC and the SVC keys

It is extremely useful to use this information

It is complete and avoids* the need to search info via LDAP
Pass the MS PAC to SSSD to prime its caches

Problem: the receliving service can forge lit.

The SVC signature is done with the SVC long term key
Potential for cache poisoning if the service is compromised

GSS-Proxy is trusted

privilege separation prevents forgery from the service

16

Future possibilities

GSS Agent

Current ssh+GSSAPI requires to export full credentials set to target
host in order to use your krb5 creds there

Exposes TGT to the target machine
Still much better than sending your password

Like ssh-agent, the GSS-Proxy protocol could be used to only forward
access to credentials

Pros:

TGT remains on user machine
GSS-proxy forwards only session keys
No contamination of local target machine cred cache

Cons:
Works only with pure GSSAPI applications, can't do direct krb5 calls

y)

Call to action

Please stop building applications that accept exclusively a
“simple” user/password for authentication

Even (or especially) web apps
It is very nice if you can support Kerberos SSO

Use GSSAPI, not Krb5 API directly

Alternatively use SASL (gives you PLAIN, GSSAPI, EXTERNAL,
.., auth)

For web applications:

use apache and mod_auth_kerb (RFC4559)
Implement the RFC on your own.
use form based auth as a fallback.

18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

