
1

GSS-Proxy:

Better privilege separation

Simo Sorce
Principal Software Engineer, Red Hat
February 2013

2

Outline

● Introduction to GSS-API

● Using GSS-API

● Introduction to GSS-Proxy

● GSS-Proxy components

● Kernel upcalls and GSS-Proxy

● Privilege separation and GSS-Proxy

● Automatic credential handling

3

Introduction to GSS-API

● GSS-API = Generic Security Service API

● Abstraction layer introduced to simplify use of Kerberos for
client-to-server interaction by hiding low level kerberos API
into a 'mechanism'.

● Not limited to Kerberos.
● Enables applications to use a consistent API with multiple

authentication protocols, to set up communication channels
● Also provides integrity (authentication/signing) and

confidentiality (encryption/sealing) services.
● If the underlying protocol allows it, also provides delegation

capabilities
● Analogous to Windows SSPI (and interoperable with it)

4

Applications using GSSAPI

● Enterprise applications that want to offer Single Sign
On capabilities (generally through Kerberos)

● Examples:
● LDAP/IMAP/SMTP/... + SASL/GSSAPI/Krb5

● SASL = Simple Authentication and Security Layer

● SSH + GSSAPI
● GSSAPI/Krb5 used for auth only (also avail. Keyex patches)

● HTTPS + SPNEGO
● GSSAPI/SPNEGO/Krb5 or NTLMSSP)

● NFS + RPCGSS (Secure NFS)
● GSSAPI/Krb5

5

Using GSS-API

1. Acquisition of credentials
● Generally 'default' credentials are used

● in the krb5 case obtained via kinit (password or keytab)

2. Establishment of security context
● gss_init_sec_context() / gss_accept_sec_context()

● Depending on the underlying protocol multiple round trips may
be used to complete context establishment.

3. Exchange of messages using security context
● Messages can be signed and/or sealed using the

established security context. eg. gss_wrap/gss_unwrap

4. Disposal of security context

6

Connection using GSS-API

Client

1c. <acquire client credentials>
2c. gss_import_name [server]
3c. [ctx] <- gss_init_sec_context

4c. gss_wrap [plain] -> [cipher]

5c. [plain] <- gss_unwrap [cipher]

Server

1s. gss_import_name [server]
2s. gss_acquire_cred [KRB5_KTNAME]
3s. gss_accept_sec_context -> [ctx]

4s. gss_unwrap [cipher] -> [plain]

5s. [cipher] <- gss_wrap [plain]

1t
N. round trips

2t
Payload encrypted

3t
Payload encrypted

7

Why a GSS Proxy ?

● Standard GSS-API assumes direct access to credentials
and long term keys by the application

● A proxy allows to implement privilege separation
● Application can use credentials w/o access to long term

secret

● GSS-API is an extensive library and is not usable directly
by the kernel

● Allows to use the full GSS-API from the kernel by turning a
local API into a local IPC

● Potential for developing an ssh agent
● avoid full delegation of credentials
● keep SSO working when jumping through multiple hosts

8

Connection using GSS-API with GSS-Proxy

Client

1c. gss_acquire_cred [name]
2c. gss_import_name [server]
3c. [ctx] <- gss_init_sec_context

(context exported to application)

4c. gss_wrap [plain] -> [cipher]

5c. [plain] <- gss_unwrap [cipher]

Server

1s. gss_import_name [server]
2s. gss_acquire_cred [KRB5_KTNAME]
3s. gss_accept_sec_context -> [ctx]

(context exported to application)

4s. gss_unwrap [cipher] -> [plain]

5s. [cipher] <- gss_wrap [plain]

1t
N. round trips

2t
Payload encrypted

3t
Payload encrypted

GSS Proxy GSS Proxy
creds creds

9

GSS-Proxy anatomy

● GSS Proxy is actually 3 things in one.
● A service daemon

● the 'gssproxy' binary - listens on unix sockets
● A stateless, event driven server

● A GSSAPI mechanism plugin (shared object)
● proxymech.so - a gssapi 'interposer' mechanism
● Requires special interposer plugin support (only in MIT 1.11)

● A communication protocol
● An XDR based RPC protocol (see gss_proxy.x file)
● RPCs ops are compounded to reduce latency

10

Privilege separation

● For services that use keytabs to accept contexts
● Keytab not available directly to the application
● Proxymech.so intercepts KRB5 mechanism and proxies calls

to GSS-Proxy
● GSS-Proxy establishes the context on behalf of the

application and then exports the context with only the session
keys to the application

● If the application is compromised credentials can be used,
but not stolen.

● Multiple applications can use the same keytab w/o
compromising each other

● In future the GSS-Proxy can be augmented with policies that
limit what the credentials can be used for.

11

Privilege separation

Application

GSS-Proxy SVC
Keytab

1. client token from
 init sec context

3. Use keytab to
accept context

5. Reply token

6. protected
communication

Proxymech.so uses a
Unix Socket to connect
to GSS-Proxy, then uses RPC
Protocol to communicate

libgssapi +
proxymech

4. relpy token &

exports context
2. proxy interposes

accept sec context

SVC
Keytab

Use keytab to
accept context

12

Kernel upcall

● First prospect user of GSS Proxy: kernel NFSD
● Current NFS server uses a bad hand crafted protocol for

upcalls that is limited to less than a memory page (~ 2KiB)
● Prevents context establishment with large tickets

● such as when a large MS-PAC is attached to a ticket

● Kernel patches have been created to let the kernel speak
the GSS-Proxy protocol on a unix socket

● Still not upstream due to minor integration issues caused by new
support for containers

● The GSS Proxy establishes the security context
● Exports a 'lucid' context to the kernel
● Also sends user creds (uid + list of secondary gids)

13

Kernel NFSD and GSS-Proxy

NFSD

GSS-Proxy NFS
Keytab

File system

1. Client auth req
(RPCGSS)

2.
 a

ut
h

to
ke

n
4.

 re
lp

y
to

ke
n

&

cl
ie

nt
 p

rin
ci

pa
l &

se
ss

io
n

ke
ys

 &

[u
id

 +
 g

id
s]

3. Use key to
decrypt auth

token and get
user identity

5. Reply token

6. Client sends
FS operations

7. Use [uid+gids]
For FS authz

Well defined GSS Proxy RPC
Protocol over a Unix Socket.
Supports:
 - large krb tickets
 - large user credentials
 - potentially channel bindings

14

Automatic Credential handling

● The Secure NFS client case
● Secure NFS relies on RPCGSS and Kerberos
● A user needs krb5 credentials to access the NFS share
● Some applications run as users but have no reason to

use Kerberos outside of the need to access NFS
● GSS-Proxy can use a keytab stored in a special area to

acquire credentials on behalf of the application user so
that Secure NFS access is allowed

● Applications need no modification nor fragile cron jobs
need to be created, process is transparent

15

NFS Client with GSS-Proxy provided autocred

NFS Client

GSS-ProxyUser
Keytab

/nfs/share

7. Client auth req
(RPCGSS)

3.
 a

cq
ui

re
 c

re
d

& in
it

se
c

co
nt

ex
t (

pa
ss

es
 u

id
)

6.
 is

c
ou

tp
ut

 to
ke

n

8.
 re

pl
y

to
ke

n

5. acquire creds
with keytab

11. Client sends
NFS operations

2. [uid]

1. process walks into path
$ cd /nfs/share
$ cat file

rpc.nfsd

Libgssapi +
proxymech.so

4, 9. acquire
cred / Init sec ctx

10
. e

xp
or

t c
on

te
xt

16

Grab the PAC and run (more on priv. sep.)

● MS Active Directory attaches user credentials to krb5 tickets
● PAC (Privilege Access Certificate)
● The PAC is signed with the KDC and the SVC keys

● It is extremely useful to use this information
● it is complete and avoids* the need to search info via LDAP
● Pass the MS PAC to SSSD to prime its caches

● Problem: the receiving service can forge it.
● The SVC signature is done with the SVC long term key
● Potential for cache poisoning if the service is compromised

● GSS-Proxy is trusted
● privilege separation prevents forgery from the service

17

Future possibilities

● GSS Agent

● Current ssh+GSSAPI requires to export full credentials set to target
host in order to use your krb5 creds there

● Exposes TGT to the target machine
● Still much better than sending your password

● Like ssh-agent, the GSS-Proxy protocol could be used to only forward
access to credentials

● Pros:

● TGT remains on user machine
● GSS-proxy forwards only session keys
● No contamination of local target machine cred cache

● Cons:

● Works only with pure GSSAPI applications, can't do direct krb5 calls

18

Call to action

● Please stop building applications that accept exclusively a
“simple” user/password for authentication

● Even (or especially) web apps

● It is very nice if you can support Kerberos SSO
● Use GSSAPI, not Krb5 API directly
● Alternatively use SASL (gives you PLAIN, GSSAPI, EXTERNAL,

.., auth)

● For web applications:
● use apache and mod_auth_kerb (RFC4559)
● implement the RFC on your own.
● use form based auth as a fallback.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

