

Securely ?

Simo Sorce
Presented by

Red Hat, Inc.

Flock 2015

Distributing Secrets

Historically
Monolithic applications on single
servers potentially hooked to a central
authentication system.

Idm

Distributing Secrets ?

Containers…

it's all their fault! :-)

Not really, most distributed systems
need credentials to access resources
like databases or 3rd party APIs

Clouds, microservices

Distributed applications multi-tier
services, 3rd party services, clouds...

What happens today?
Provisioning systems like puppet and
ansible are used to distribute data,
storing credentials in the clear
somewhere and pushing them around to
various hosts.

Some people even bake credentials
directly in container images or keep them
in some version control system directly
accessible by images …

Secrets != configuration

Configuration in many cases can be
public information and it is rarely an issue
if it get disclosed

[security through obscurity?]

Secrets are never public, and should be
treated differently from the rest.

Let's define the problem space

What is that we really need to do with
secrets and passwords ?

And what options we have ?

5 things we care for: PUPPA
Provide, Update, Preserve, Protect, Audit

On the following slide:

P = provisioning copies of secrets in files

A = Use of an API to retrieve secrets

How do I get a secret for a specific
service to a specific application ?

P) Push secret into application config
files from some place that stores
them

A) Make the application (or helper) pull
the secrets as needed

Provide

How do I update a secret in all
applications when needed ?

P) Push secrets again and/or restart
application/container

A) 1. Notify application
2. Application pulls the new secret

Update

How do I preserve correct credentials
when a container image is rebuilt ?

P) Keep side volume with credentials
stored there “in the clear” or inject at
every startup

A) Let applications pull their secrets

Preserve

How do I limit access to these credentials
exclusively to what needs them ?

P) Trust the provisioning system and all
the people involved to get it right.

A) Store secrets encrypted, use Access
Controls to limit who gets what.

Protect

How do I know who got secrets ?

P) Add auditing capabilities throughout
the whole infrastructure.
(LAUGHS)

A) Store secrets encrypted, audit who
access what at retrieval time.

Audit

But wait ...

… how do I authenticate to an API if I do
not have credentials ?

That's a
GREAT

question!

The host itself is trusted by the
applications it runs, containers and VMs
included.

Conversely, applications running on the
host are (ideally) not trusted.

The host is critical to address
bootstrapping issues, and will have to be
provisioned accordingly.

Give hosts an identity (a x509 cert, a keytab,
a password) and a role when provisioning.

Trusting the Host ?

Trying to get FreeIPA domain controllers
installed in an automated way.

Bootstrapping the installation is
problematic, as there is a need to transfer
passwords, keys, certificates from one
server to another.

Traditionally done manually by preparing
and transferring an encrypted install file.

Does not scale well in a dynamic
environment.

Example use case

What's hard about it ?
Some of these keys change over time,
others are created over time, so we
cannot just keep a copy “somewhere”

We needed:

A way to fetch a set of credentials from an
existing server over the network

A secure method to transfer those keys over
the wire

A way to authorize access to those keys

What do I need ?
An API and service to distribute secrets

Can encrypt information at rest and in
transit

Provides a useful REST API to access/store
data

Modular design allow to configure
authentication/authorization and storage
methods including proxying requests to
other services.

Custodia
Built in Python

Simple HTTP server, can listen on a unix
socket and served via a proxy (Apache)

Uses jwcrypto to implement the JOSE
standard for web encryption (uses
python-cryptography for crypto ops)

Very easy to extend (see ipakeys)

Works as a Pipeline
The path used to fetch a secret can be
munged and composed by intermediaries

GET https://srv1/secrets/foo/bar

GET https://my.custodia.net/secrets/remote1/foo/bar

AUTHORIZE remote1 FOR bar;
SELECT bar WHERE user IS foo;

Client

Custodia Remote1

Custodia Core1

Secrets
Database

Transferring secrets ...
Simple type (use over TLS, please!):

Retrieve a secret:

→ GET /secrets/test/mypassword

← 200 OK
 {type: simple, value: “secret” }

Store a secret:

→ PUT /secrets/test/mypassword
 {type: simple, value: “secret” }

← 201 OK

… with signing ...
Retrieve using Key Exchange Message:

→ GET /secrets/three/levels/down/mysecret?
type=kem&value=aaaaaa.bbbbbb.cccccc

aaaaaa.bbbbbb.cccccc == Encoded {
"protected": {

 "kid": <public-key-dentifier>,
 "alg": <valid alg name> },

"claims": {
 "sub": “mysecret”,
 "exp": <expiration time>,
 "value": <arbitrary> },

"signature": "ABCDEFGHIJKLMNOPQRSTUVXYZ"

}

Header

Payload

Signature

… and sealing ...
Retrieve using Key Exchange Message:

← 200 OK

aaaaa.bbbbb.ccccc.ddddd.eeeee == {
"protected": {

"kid": <public-key-dentifier>,
"alg": <valid alg name>,
"enc": <valid enc type> },

"encrypted_key": <JWE Encrypted Key>,
"iv": <Initialization Vector>,
"ciphertext": <Encrypted JWS token>,
"tag": <Authentication Tag>

}

Header

Payload

JWE fields

JWE fields

Accessing Custodia
Authentication is normally done via
tokens in headers, fully pluggable,
determined by configuration statements

Example Authentication directive:
[auth:header]
handler = custodia.httpd.authenticators.SimpleHeaderAuth
name = REMOTE_USER

Example Authorization directive:
[authz:kemkeys]
handler = ipakeys.kem.IPAKEMKey
paths = /keys
store = ipa
server_keys = /etc/ipa/custodia/server.keys

Within FreeIPA

LDAP

Custodia

1. Admin stores new server's
Public Keys in LDAP
[Provisioning step]

2. New replica sends signed
request for keys

3. Custodia fetches
Public Keys and
Authorizes based
on data in LDAP

4. Custodia sends back signed
and encrypted reply with keys

Questions?

simo@redhat.com
Contact:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

